Cheon Lab

Main Links

Logo and Main Menu

Full Menu

Research

Roman Kempt, Agniezka Kuc, Jae Hyo Han, Jinwoo Cheon, Thomas Heine*
"2D Crystals in Three Dimensions: Electronic Decoupling of Single-layered Platelets in Colloidal Nanoparticles"
Small, 14, 1803910
Date: Nov 5, 2018

2D crystals, single sheets of layered materials, often show distinct proper-ties desired for optoelectronic applications, such as larger and direct band gaps, valley- and spin-orbit effects. Being atomically thin, the low amount of material is a bottleneck in photophysical and photochemical applica-tions. Here, the formation of stacks of 2D crystals intercalated with small surfactant molecules is proposed. It is shown, using first principles calcula-tions, that the very short surfactant methyl amine electronically decouples the layers. The indirect–direct band gap transition characteristic for Group 6 transition metal dichalcogenides is demonstrated experimentally by observing the emergence of a strong photoluminescence signal for ethoxide-intercalated WSe2 and MoSe2 multilayered nanoparticles with lateral size of about 10 nm and beyond. The proposed hybrid materials offer the highest possible density of the 2D crystals with electronic properties typical of mono layers. Variation of the surfactant’s chemical potential allows fine-tuning of electronic properties and potentially elimination of trap states caused by defects.

Copyright and Address

  • ADDRESS Department of Chemistry. 50 Yonsei-ro, Seodaemun-gu, Seoul 03722
  • TEL +82-2-2123-4748
  • FAX +82-2-2123-4640
  • EMAIL lee7626@yonsei.ac.kr
  • © Cheon Group | Yonsei University. All Right Reserved

Display Page Loading Image

Top